

Parameterizing Locality and Coordination

Marc Brooker

Amazon Web Services

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What's the Problem

- Distributed transaction processing is hard
- Performance depends on workload!

What's the Problem

- Locality and Coordination are critical properties of workloads
- Locality
 - Local: Caching
 - Distributed: How many machines I need to hit
- Coordination
 - Concurrency Control: What blocks, what aborts, etc
 - Commit: How many machines I need to hit

Today's Benchmarks Don't Help

- YCSB, TPC-C are just too easy
- TPC-E is ok, but only a point sample
 - And still pretty easy
- Real workloads have a lot more diversity
- Many are harder

aws

Graphs and Workloads

- Locality relates to *degree distribution* and *clustering*
- Coordination relates to *path length* and *degree distribution*
- Generate a graph, walk it => workload!

Generating Graphs: Watts-Strogatz

- Watts-Strogatz Small World Networks model
 - Generation is O(N)
 - Single parameter: controls connectedness and locality

Watts and Strogatz, Collective dynamics of 'small-world' networks, Nature, 1998

Generating Graphs: Watts-Strogatz-Zipf

- Database degree distributions tend to be more extreme
- "Hot Keys"
- So extend W-S model with non-uniform (e.g. Zipf)
- Two parameters now:
 - W-S p, controls connectivity and locality
 - Zipf *alpha*, controls key heat distribution

Extensions

- Depending on Isolation Level
 - Write-Write edges only (e.g. Snapshot)
 - Read-Write edges (e.g. Serializable, ANSI RR)
 - Coloring graph edges, or separate R and W graphs
- Hierarchical models to capture known structure
- Other network models

Thank you!

Marc Brooker

<u>mbrooker@amazon.com</u> <u>marcbrooker@gmail.com</u> <u>https://brooker.co.za/blog/</u>