dWs$s

The Hardest Problem

(and the silliest)

Marc Brooker
SoC(C'23

© 2020, Amazon Web Services, Inc. or its Affiliates.

About Me

 Fifteen years at AWS.

* Oncall for 15 years.

* I've worked on EC2, Lambda, EBS, and several other big AWS services.
* Mostly a practitioner.

* |'ve read ~3000 cloud system postmortems, from across the industry.

© 2020, Amazon Web Services, Inc. or its Affiliates. aWS

What are your hardest problems? §>

The hardest problem

The problem @
=7

Poisson Arrival
Process

© 2020, Amazon Web Services, Inc. or its Affiliates.

Client

Server

Latency = a + B * concurrency

dWs

Poisson Arrival
Process

© 2020, Amazon Web Services, Inc. or its Affiliates.

Client

Timeout
3 retries
Exponential backoff
Jitter

Server

Latency = a + B * concurrency

dWs

Client

Timeout X Se rver
Poisson Arrival 5 re.trles Latency = o + B * concurrency
Exponential backoff
Process Jitter

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

—J

Poisson Arrival
Process

© 2020, Amazon Web Services, Inc. or its Affiliates.

Client

Timeout
3 retries
Exponential backoff
Jitter

Server

Latency = a + B * concurrency

dWs

—
Poisson Arrival

Process

© 2020, Amazon Web Services, Inc. or its Affiliates.

Client

Timeout
3 retries

Séver

Latency = a + B * concurrency

dWS

100 =
"9 .
5 variable
g 75
U
0 e SLalts
-
U
(oW — SUCCESSEeS
= 50-
"5‘ — eft1les
QO
25 =
0 -
1] i]]
0 20 40 60 SO
Simulated time (s)
https://github.com/mbrooker/simulator_example/blob/main/simple_collapse_sim/sim.py
© 2020, Amazon Web Services, Inc. or its Affiliates. aWS

_/‘7

Can’t you just....

020, Amazon Web Services, Inc. or its Affiliates. aWS

They are often called Three-Phase Commit
protocols. ...

They have usually attempted to “fix" the Two-
Phase Commit protocol by choosing another TM if
the first TM fails. However, we know of none that
provides a complete algorithm proven to satisfy a
clearly stated correctness condition.

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

eI
BRI

-~
e

- P

e

(.

. N A7
- s._b__:/\“ Tty

Ains A

N ——

dWs

© 2020, Amazon Web Se

The hardest problem

© 2020, Amazon Web Services, Inc. or its Affiliates.

Distributed systems are complex
dynamical systems.

But we don’t think about them that way!

dWs

Bronson et al, “Metastable failures in distributed systems”, HotOS'21
Huang et al, “Metastable Failures in the Wild"”, OSDI'22

Metastability Taxonomy — Sustaining effect

* A feedback loop that keeps the system overloaded
* Two types:

Workload amplification ' Capacity degradation amplification
Amplification

A
RPS _
continues \

Amplification
/ Trigger fixed

y
RPS

Trigger applied
~N Trigger fixed

e Amplification
Amplification & continues
starts

A -
»

Time

starts

N\
;

Trigger applied

T

A -
»

Time

dWsS

© 2020, Amazon Web Services, Inc. or its Affiliates.

Metastability in the Wild — Survey

* We search through over 600 public post-mortem incident reports

* |dentify 21 metastable failures in 00 Meta
* Large cloud infrastructure providers 3
* Smaller companies and projects circleci

¢ a0
aws B
~ 2 a ‘

e Can cause major outages

e 4-10 hours most commonly

* Incorrect handling leads to future incidents
* An important class of failures to study

B Microsoft Xﬁfﬁﬁfﬁf&ﬁ

B Azure
&

cassandra

Q)

Slide from Huang, et al, Metastable Failures in the Wild, OSDI'22 https://www.usenix.org/conference/osdi22/presentation/huang-lexiang

© 2020, Amazon Web Services, Inc. or its Affiliates.

. Nodes B, C

\ -.
\ i and D store

keys in
i range (A,B)
Y i including
\ /i
/
\@ @ -.:-

Recovering from overload adds load.

© 2020, Amazon Web Services, Inc. or its Affiliates.

/KeyK
Oy
ORNTY
/
[

De Candia et al, “Dynamo: Amazon'’s Highly Available Key-value Store”, SOSP'07

Average Time

Update every T seconds

Update Interval T

25
1’:

20 - ! .

’ . -

/ I
151 L
10 t—‘-' "‘.-" = —
5 I¥; ‘:::""#-
0 { | - —— {

0 10 - 20 30 40 50

2=0.9, u=1.0
n =100

— 1 Choice

T 2 Choices

What if T depends on load?

© 2020, Amazon Web Services, Inc. or its Affiliates.

Mitzenmacher, “How useful is old information?”, 2000

Partial Solution 1: Formal Methods §>

%@3
N

Lamport 9
What good is temporal logic? U

© 2020, Amazon Web Services, Inc. or its Affiliates.

dWS

DOI:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
MARC BROOKER, AND MICHAEL DEARDEUFF

How Amazon
Web Services

Uses Formal
Methods

© 2020, Amazon Web Services, Inc. or its Affiliates.

S3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant dis-
tributed algorithms for replication,
consistency, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
tem is a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

Hubris
Humility
Laziness

dWs

Kani Rust Verifier Blog About

Using the Kani Rust Verifier on a Firecracker
Example

Jul 13, 2022

In this post we'll apply the Kani Rust Verifier (or Kani for short), our open-source formal verification
tool that can prove properties about Rust code, to an example from Firecracker, an open source
virtualization project for serverless applications. We will use Kani to get a strong guarantee that
Firecracker's block device is correct with respect to a simple virtio property when parsing guest
requests, which may be invalid or malicious. In this way, we show how Kani can complement
Firecracker's defense in depth investments, such as fuzzing.

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

Using Lightweight Formal Methods to Validate a
Key-Value Storage Node in Amazon S3

James Bornholt Rajeev Joshi Vytautas Astrauskas
Amazon Web Services Amazon Web Services ETH Zurich
& The University of Texas at Austin

Brendan Cully Bernhard Kragl Seth Markle

Amazon Web Services Amazon Web Services Amazon Web Services
Kyle Sauri Drew Schleit Grant Slatton

Amazon Web Services Amazon Web Services Amazon Web Services

Serdar Tasiran Jacob Van Geffen Andrew Warfield
Amazon Web Services University of Washington Amazon Web Services

Abstract Using Lightweight Formal Methods to Validate a Key-Value Storage

Node in Amazon S3. In ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP "21), October 2628, 2021, Virtual Event,
Germany. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3477132.3483540

This paper reports our experience applying lightweight for-
mal methods to validate the correctness of ShardStore, a new
key-value storage node implementation for the Amazon S3
cloud object storage service. By “lightweight formal methods”

© 2020, Amazon Web Services, Inc. or its Affiliates. aWS

Semantic-based Automated Reasoning for
AWS Access Policies using SMT

John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,
Kasper Luckow, Neha Rungta, Oksana Tkachuk, Carsten Varming
Amazon Web Services

Abstract—Cloud computing provides on-demand access to IT
resources via the Internet. Permissions for these resources are
defined by expressive access control policies. This paper presents
a formalization of the Amazon Web Services (AWS) policy
language and a corresponding analysis tool, called ZELKOVA,
for verifying policy properties. ZELKOVA encodes the semantics
of policies into SMT, compares behaviors, and verifies properties.
It provides users a sound mechanism to detect misconfigurations
of their policies. ZELKOVA solves a PSPACE-complete problem
and is invoked many millions of times daily.

T TaTTrmM AT TAMTANT

© 2020, Amazon Web Services, Inc. or its Affiliates.

In this paper, we present the development and application of
ZELKOVA, a policy analysis tool designed to reason about the
semantics of AWS access control policies. ZELKOVA translates
policies and properties into Satisfiability Modulo Theories
(SMT) formulas and uses SMT solvers to check the validity
of the properties. We use off-the-shelf solvers and an in-house
extension of Z3 called Z3 AUTOMATA.

ZELKOVA reasons about all possible permissions allowed by
a policy in order to verify properties. For example, ZELKOVA

can ancwer the anectinne “Te thice receconree acceccihle hvu a

dWs

B

* Ot & e e e
- e D™

- i
e

P , T
iy v SEe
o WM:M.‘V: T Al Ml“"”.’. i !l
a . et vhete Bait { ‘
I l'w
PO o i o e | wery (pchive g
o : w My w il bl vor sockaelis 1 aetline)
: i alt {
. Wt s Bt | oy * oo nglainy 0 st sate)
w www | Seve il wry Gy 1 N My) adiall 9 rC ‘ >
w W e, | '
R S 3 " i 0 Gy 1) | { !
— W n s e (1) o oheplvteriorker @0 (40 @ Lot)
e o e U, v et UL R e 108 rlts ot
2 Ry thgoybem™) ol v, hertltes, fop porbarin o (14D
) ! L N
)
O Prtgtyhgety (DAFNY e
" { :v_l&mm-n el e T~ S]
L rﬁ-—*ﬂll
1 N S Tl | e e by e e ey

- wrer, e, Dewor v 00,
ol » el Wl s i)

- weale,)
e e)
" ogee & ol Seoowto)
e e
e T — Pt ifenany
')
))
!)

S &
- v

-
)

@ b b et e -
L tiaation Sew! Cwr ot b ion 3 000 U Cmtiaetbatvben ter (hanetey] |

||—f‘a-.mdhnum~n~n~'.~t-mu

N K o
e eyl e
S) g et ey D 0 ety

¢ R N e it

e AT IS

et el L T
" H.u.bw .
i

L] 'Mhmllqlnbm
Ml A AT

=#

. —

-

e

. e

-

u

. '
uﬂu0~[r|~wul"ﬁhhﬂ

0. o

Safety
Liveness

© 2020, Amazon Web Services, Inc. or its Affiliates.

© 2020, Amazon Web Services, Inc. or its Affiliates.

Safety
Liveness

dWs

Jack Vanlightly
Researcher at Confluent

(9 CONFLUENT

&8 kafka.

C/ an@eO

P Pl O 000/57:41

«“ > Markus Kuppe
N=/® 639 subscribers

© 2020, Amazon Web Services, Inc. or its Affiliates.

\

Markus A. Kuppe
Principal Research Engineer

Obtaining Statistical Properties by Simulating Specs with TLC - Jack Vanlightly and Markus A. Kuppe
ik 34 GCJ ~> Share

September 22, 2022
conf.tlapl.us

1 Download K clip =+ save

dWS

\/‘7

Partial Solution 2: Control Theory §>

P Pl € 227/305

Double Pendulum on a Cart

Tobias Gliick =
° 807 sobstiiare w 5 22k CJR £ Share {4 Download =+ Save

© 2020, Amazon Web Services, Inc. or its Affiliates.

Challenges to Applying Control Theory

* Non-linearity is common
(doesn’t obey superposition principle)

* Non-time-invariance in ubiquitious
» Stochastic behavior is widespread

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

"Reasoning purely analytically

about the behavior of complex

stochastic systems is generally
infeasible.”

Agha and Palmskog, A Survey of Statistical Model Checking, TOMACS, Januar y 2018

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

Partial Solution 3: Simulation

Simulation & Numerical Methods

Created with https://github.com/narimiran/double_pendulum

© 2020, Amazon Web Services, Inc. or its Affiliates.

Poisson Arrival
Process

© 2020, Amazon Web Services, Inc. or its Affiliates.

Client

Timeout
3 retries
Exponential backoff
Jitter

Server

Latency = a + B * concurrency

dWs

100 =
"9 .
5 variable
g 75
U
0 e SLalts
-
U
(oW — SUCCESSEeS
= 50-
"5‘ — eft1les
QO
25 =
0 -
1] i]]
0 20 40 60 SO
Simulated time (s)
https://github.com/mbrooker/simulator_example/blob/main/simple_collapse_sim/sim.py
© 2020, Amazon Web Services, Inc. or its Affiliates. aWS

_/‘7

SHARD

C-2

SHARD

A-F

dWs

Regular Small-world

Increasing randomness

Watts and Strogatz, “Collective dynamics of ‘small-world’ networks”, Nature, 1998

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

750~

500 -

Transactions per second

250 -

© 2020, Amazon Web Services, Inc. or its Affiliates.

10

Number of shards

20

30

name

peta 0.0
beta 0.1
peta 0.2
peta 0.3
beta 0.4
beta 0.5
beta 0.6
beta 0.7
peta 0.8
beta 0.9

dWS

V"

© 2020, Amazon Web Services, Inc. or its Affiliates.

~5 000 lines of Rust

but...

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

We already have a specification!
We already have a tool that

searches the specification’s state
space!

dWs

Call To Action 1: §>
Rethink the Foundations of Computer Science

dWs$s

Call To Action 2:
Rethink the Systems Field’s Priorities

© 2020, Amazon Web Services, Inc. or its Affiliates.

Value stability as a design
goal in systems research.

(and value security, durability, integrity, availability,
more t00).

dWs

Call To Action 3:

Build a Stronger Foundation, Together

eI
BRI

-~
e

- P

e

(.

. N A7
- s._b__:/\“ Tty

Ains A

N ——

dWs

© 2020, Amazon Web Se

© 2020, Amazon Web Services, Inc. or its Affiliates.

Theory: a foundation for

thinking about emergent

properties of distributed
systemes.

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

Tools: automated
reasoning about system
stability.

dWs

© 2020, Amazon Web Services, Inc. or its Affiliates.

Practices: better
defaults.

A safer toolkit.

dWs

Questions (or answers!)

Marc Brooker E |

mbrooker@amazon.com
https://brooker.co.za/blog/

dWsS

mailto:mbrooker@amazon.com

